Build Your Own AI Assistant Part 1 - Creating the Assistant
116820 Views
Is the new Raspberry Pi AI Kit better than Google Coral?
114678 Views
Control Arduino with Python using Firmata / PyFirmata
87081 Views
How to Map with LiDAR - using a Raspberry Pi Zero 2W, RPLidar and Rviz
57314 Views
Creating a Supercomputer with a Raspberry Pi 5 Cluster and Docker Swarm!
53588 Views
Node-Red Automation, MQTT, NodeMCU & MicroPython
52067 Views
Thinkman
Podman vs Docker
MicroPython Robotics
Bottango and Isaaca
LidarBot
Snaszy NAS a 3D printed NAS for Raspberry Pi
Running K3s on Raspberry Pi
0h 36m
From Docker to Podman
0h 28m
MicroPython Robotics Projects with the Raspberry Pi Pico
0h 24m
Bottango Basics
0h 22m
Mini-Rack 3D Design Tutorial
0h 20m
Using the Raspberry Pi Pico's Built-in Temperature Sensor
Learn Linux from the basics to advanced topics.
Learn how to use a Raspberry Pi Pico
Learn MicroPython the best language for MicroControllers
Learn Docker, the leading containerization platform. Docker is used to build, ship, and run applications in a consistent and reliable manner, making it a popular choice for DevOps and cloud-native development.
Learn how to build SMARS robots, starting with the 3D Printing the model, Designing SMARS and Programming SMARS
Learn how to build robots, starting with the basics, then move on to learning Python and MicroPython for microcontrollers, finally learn how to make things with Fusion 360.
Learn Python, the most popular programming language in the world. Python is used in many different areas, including Web Development, Data Science, Machine Learning, Robotics and more.
Learn how to create robots in 3D, using Fusion 360 and FreeCAD. The models can be printed out using a 3d printer and then assembled into a physical robot.
Learn how to create Databases in Python, with SQLite3 and Redis.
KevsRobots Learning Platform
55% Percent Complete
By Kevin McAleer, 2 Minutes
Data visualization is an important part of data analysis. Python offers multiple libraries for creating static, animated, and interactive visualizations, including Matplotlib and Seaborn. In this lesson, we’ll explore the basics of these two libraries.
Data visualization is the graphical representation of data and information. It uses visual elements like charts, graphs, and maps to provide an easy way to understand trends, outliers, and patterns in data.
Matplotlib is a plotting library for Python. It provides an object-oriented API for embedding plots into applications.
import matplotlib.pyplot as plt # Create a simple line plot plt.plot([1, 2, 3, 4]) plt.ylabel('Some Numbers') plt.show()
Seaborn is a Python data visualization library based on Matplotlib. It provides a high-level interface for creating attractive graphics.
import seaborn as sns # Load an example dataset tips = sns.load_dataset("tips") # Create a simple histogram sns.histplot(data=tips, x="total_bill")
In this lesson, you’ve learned about the basics of data visualization in Python. We’ve covered the importance of data visualization and explored two Python libraries, Matplotlib and Seaborn, for creating static visualizations. Data visualization is a powerful tool for understanding data and communicating results.
< Previous Next >
You can use the arrows ← → on your keyboard to navigate between lessons.
← →