111763 Views
85221 Views
83639 Views
51774 Views
49949 Views
48472 Views
Obsidian - the best tool for Makers
10 Projects for your Raspberry Pi Pico
Raspberry Pi Telegraf Setup with Docker
Setting Up Dynamic DNS on a Raspberry Pi for Self-Hosting
Raspberry Pi WordPress Setup with Docker
Raspberry Pi WireGuard VPN Setup with Docker
Using the Raspberry Pi Pico's Built-in Temperature Sensor
Getting Started with SQL
Introduction to the Linux Command Line on Raspberry Pi OS
How to install MicroPython
Wall Drawing Robot Tutorial
BrachioGraph Tutorial
KevsRobots Learning Platform
28% Percent Complete
By Kevin McAleer, 3 Minutes
One of Rust’s distinguishing features is its ownership system, which is a set of rules that the compiler checks at compile time. It does not slow down your program while running. This lesson will cover the concepts of ownership, references, and borrowing, as well as lifetimes, which are all central to understanding how Rust manages memory.
Ownership in Rust means that each value in Rust has a variable that’s called its owner. There can only be one owner at a time, and when the owner goes out of scope, the value will be dropped.
The rules of ownership are:
This system prevents memory leaks and allows for more efficient memory management.
Instead of transferring ownership, Rust uses references to give you access to values without taking ownership of them. This process is called ‘borrowing’. As with ownership, there are rules for borrowing:
Borrowing allows you to use values without taking ownership, enabling multiple parts of your code to access data without duplicating it.
Lifetimes are Rust’s way of ensuring that all borrows are valid. They are a part of the type system and describe the scope for which a reference is valid. In many cases, lifetimes are implicit and inferred, just like most types are, but there are situations where you need to annotate them explicitly.
Lifetimes ensure that references do not outlive the data they refer to, preventing dangling references.
Python Comparisons In Python, memory management is handled by garbage collection, so the concepts of ownership, borrowing, and lifetimes are not directly applicable. Python allows you to reference objects multiple times without explicit rules, relying on reference counting and garbage collection to manage memory, which contrasts with Rust’s compile-time checks for memory safety and access rules.
In this lesson, you learned about Rust’s ownership, borrowing, and lifetimes. Understanding these concepts is fundamental to writing safe and efficient Rust code, as they enable Rust to manage memory safety without a garbage collector.
< Previous Next >