Build Your Own AI Assistant Part 1 - Creating the Assistant
116820 Views
Is the new Raspberry Pi AI Kit better than Google Coral?
114678 Views
Control Arduino with Python using Firmata / PyFirmata
87081 Views
How to Map with LiDAR - using a Raspberry Pi Zero 2W, RPLidar and Rviz
57314 Views
Creating a Supercomputer with a Raspberry Pi 5 Cluster and Docker Swarm!
53588 Views
Node-Red Automation, MQTT, NodeMCU & MicroPython
52067 Views
SMARS Lab upgrade with PyCharm
Chicken Nugget Piano
Pi Tray - Mini-rack - Part II
Weather Station Display
Pi 10 Inch Mini-rack
Installing and Using DeepSeek-R1:1.5 on a Raspberry Pi with Docker
Mini-Rack 3D Design Tutorial
0h 20m
Using the Raspberry Pi Pico's Built-in Temperature Sensor
0h 24m
Getting Started with SQL
0h 32m
Introduction to the Linux Command Line on Raspberry Pi OS
0h 42m
How to install MicroPython
0h 8m
Wall Drawing Robot Tutorial
0h 22m
Learn Linux from the basics to advanced topics.
Learn how to use a Raspberry Pi Pico
Learn MicroPython the best language for MicroControllers
Learn Docker, the leading containerization platform. Docker is used to build, ship, and run applications in a consistent and reliable manner, making it a popular choice for DevOps and cloud-native development.
Learn how to build SMARS robots, starting with the 3D Printing the model, Designing SMARS and Programming SMARS
Learn how to build robots, starting with the basics, then move on to learning Python and MicroPython for microcontrollers, finally learn how to make things with Fusion 360.
Learn Python, the most popular programming language in the world. Python is used in many different areas, including Web Development, Data Science, Machine Learning, Robotics and more.
Learn how to create robots in 3D, using Fusion 360 and FreeCAD. The models can be printed out using a 3d printer and then assembled into a physical robot.
Learn how to create Databases in Python, with SQLite3 and Redis.
KevsRobots Learning Platform
60% Percent Complete
By Kevin McAleer, 3 Minutes
Machine Learning is a method of data analysis that automates analytical model building. Python, with its strong set of libraries like Scikit-learn, makes it a great language for Machine Learning. This lesson will introduce the basics of machine learning and how to use the Scikit-learn library for predictive modeling.
Machine learning is a type of artificial intelligence (AI) that allows software applications to become more accurate at predicting outcomes without being explicitly programmed to do so. Machine learning algorithms use historical data as input to predict new output values.
Machine learning
There are three major types of machine learning: supervised learning, unsupervised learning, and reinforcement learning.
Supervised Learning: The algorithm learns from labeled data. Given a set of training examples, the algorithm tries to find the best model to relate the inputs to the output.
Unsupervised Learning: The algorithm learns from unlabeled data and finds hidden patterns or intrinsic structures in the input data.
Reinforcement Learning: The algorithm learns to perform an action from experience. It is trained to make specific decisions by rewarding and punishing behaviors.
Scikit-learn is one of the most popular open-source machine learning libraries for Python. It provides a range of supervised and unsupervised learning algorithms.
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn import svm # Load dataset iris = datasets.load_iris() # Split dataset into training set and test set X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.4, random_state=0) # Create a model clf = svm.SVC(kernel='linear', C=1) # Train the model using the training sets clf.fit(X_train, y_train) # Predict the response for test dataset y_pred = clf.predict(X_test) # Print the predictions print(y_pred)
In this lesson, you’ve learned about the basics of machine learning, including an understanding of different types of machine learning. We also introduced the Scikit-learn library and demonstrated how it can be used for predictive modeling. Machine learning is a powerful tool for data analysis and predictive modeling.
< Previous Next >